Первая теорема Гёделя о неполноте Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, во всякой непротиворечивой теории, включающей формальную арифметику), существует такая замкнутая формула F, что ни F, ни не являются выводимыми в этой теории.
Иначе говоря, в любой достаточно сложной непротиворечивой теории существует утверждение, которое средствами самой теории невозможно ни доказать, ни опровергнуть. Например, такое утверждение можно добавить к системе аксиом, оставив её непротиворечивой. При этом для новой теории (с увеличенным количеством аксиом) также будет существовать недоказуемое и неопровержимое утверждение.
Теорема была доказана Куртом Гёделем в 1931 году.
Вторая теорема Гёделя о неполноте
Во всякой достаточно богатой непротиворечивой теории первого порядка (в частности, в
...
Узреть истину »